46 research outputs found

    Multiscale Design of Materials

    Get PDF
    Current methods of materials development, relying mostly on experimental tests, are slow and expensive. It often takes over a decade and costs many millions of dollars to develop and certify new materials for critical applications. With evolving constraints being placed on the use of materials arising from concerns with energy and materials resource sustainability, new approaches for materials development is essential. Moreover, it is increasingly important for materials development to be integrated into overall product design and development, allowing for optimal use of materials as well as enhancing our ability to recycle and reuse. In this paper, we discuss a new program in which we link methodologies developed over the past few decades in computational materials science to a modern computational design platform (VE-Suite) to enable the multiscale design of materials. Development of such multiscale design platforms is essential for the successful implementation of integrated computational materials engineering (ICME), an emerging discipline within materials development. We will present the basic framework of our program and discuss progress to date

    Teaching sustainable development in materials science and engineering

    Get PDF
    Preparing the next generation of materials scientists and engineers requires more than teaching them knowledge of material properties and behaviors. Materials science and engineering must also take into account materials sustainability in the context of society and the environment, as discussed throughout this issue. Including topics such as sustainability in a materials curriculum is not new. Issues of ethics, costs, and so on have long been an integral part of our education. Although detailed treatment of all such topics cannot be included in a general materials education curriculum, the concepts of sustainable development and the role of materials in a sustainable future can be introduced. Indeed, many materials science programs are beginning to include these topics in their curricula. This article discusses three such programs that the authors have helped design and implement in the United States, each taking a different approach to engaging students in these topics. The intention is not to provide an exhaustive overview of education in sustainable development, but rather to describe a range of strategies that are currently being applied and to raise pertinent issues in materials science education

    New high-pressure phases of ice

    Get PDF
    An ionic model has been used in conjunction with classical constant-pressure molecular-dynamics calculations to explore the properties of possible high-pressure phases of ice. Around 100 GPa, the model is found to convert from the symmetric hydrogen-bonded cuprite structure (ice X) to a fully ordered antifluorite structure. On heating, the new phase, ice XI, becomes a fast-ion proton conductor

    High-density structures and phase transition in an ionic model of H<sub>2</sub>O ice

    Get PDF
    A self-consistent ionic model of water (protons and O2- ions) has been used to explore the low-temperature, high-pressure properties of ice. Interionic interactions were calculated with the electron-gas model, and the self-consistent changes in the electronic structure of the oxide ions were modeled with Watson spheres. A phase transition is predicted at about 330 GPa from the observed, low-pressure, symmetric hydrogen-bonded cuprite structure to a fully ordered antifluorite structure. The transition pressure is higher than the 100-GPa estimate obtained from a molecular-dynamics study [Phys. Rev. Lett. 60, 2284 (1988)] that employed more approximate potentials

    On the role of composition and processing parameters on the microstructure evolution of Ti-xMo alloys

    Full text link
    Abstract Laser Engineered Net Shaping (LENS™) was used to produce a compositionally graded Ti-xMo (0 ≤ x ≤ 12 wt %) specimen and nine Ti-15Mo (fixed composition) specimens at different energy densities to understand the composition–processing–microstructure relationships operating using additive manufacturing. The gradient was used to evaluate the effect of composition on the prior-beta grain size. The specimens deposited using different energy densities were used to assess the processing parameters influence the microstructure evolutions. The gradient specimen did not show beta grain size reduction with the Mo content. The analysis from the perspective of the two grain refinement mechanisms based on a model known as the Easton & St. John, which was originally developed for aluminum and magnesium alloys shows the lower bound in prior-beta grain refinement with the Ti–Mo system. The low growth restriction factor for the Ti-Mo system of Q = 6,5C0 explains the unsuccessful refinement from the solute-based mechanism. The energy density and the grain size are proportional according to the results of the nine fixed composition specimens at different energy densities. More energy absorption from the material represents bigger molten pools, which in turn relates to lower cooling rates.https://deepblue.lib.umich.edu/bitstream/2027.42/147465/1/13065_2019_Article_529.pd

    Optimization of strength and ductility in nanotwinned ultra-fine grained Ag: Twin density and grain orientations

    Get PDF
    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is not reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong 〈1 1 1〉 fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: (1) untwinned grains and (2) nanowinned grains that are not oriented with 〈1 1 1〉 along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with 〈1 1 1〉 along the growth direction are softer than nanotwinned grains that are oriented with 〈1 1 1〉 along the growth direction. We have revealed that an ultrafine-grained (150–200 nm) structure consisting of a mixture of nanotwinned (∼8–12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility

    Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions

    Get PDF
    Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENSâ„¢), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper
    corecore